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A h c t .  The operators r2 ,  p2  and r . p  + p .  r are a basis of a representation of the algebra 
Oz.*. Using harmonic oscillator wavefunctions with a fixed angular momentum as basis of 
the representation space, the isometrically equivalent representation in work by Barut can 
be identified. This allows one to write down formulae for matrix elements, relative to 
oscillator wavefunctions, of any operator of the corresponding group representation. These 
include exp(icr2), exp(iq2p2/h2), their products, and the scaling operator. One can thus 
obtain an algebraic derivation of the matrix elements of a momentum-dependent nuclear 
interaction proposed by Tabakin and Davies. 

1. Introduction 

Potential representations of the nucleon-nucleon interaction often depend on the 
relative momentum p of the two particles as well as on their relative position r. One 
such non-local potential, introduced by Tabakin and Davies (1966) to represent the 
(singlet) interaction, has the form 

V(r, p )  = - V ,  e-azr2 + ~ ( p )  e-bzrz +e-b2r2 C(P) (1) 

~ ( p )  = v2(p2/fi2b2) exp(-s2p2/fi2). (2) 

with 

(In these equations, all symbols except r and p represent constants.) 
In applications, matrix elements of the potential are required, and in particular 

matrix elements between harmonic oscillator wavefunctions &,,. Since C(p) acts as a 
differential operator on wavefunctions of position, the usual straightforward integra- 
tion formulae are not available. However, Tabakin and Davies devised Laplace 
transform methods to evaluate C(p)&,,, and then the matrix elements of the potential. 
Their formulae were later used by Pearson and Saunier (1968), and Fu and Yost (1970). 
Tabakin and Davies noted that the effect of C ( p )  on #nlm was like that of a scaling 
operator. 

This paper presents an algebraic derivation of these matrix elements, using group 
theory. The operators r 2 ,  p2,  and (r . p + p  . r )  are a basis of a representation of the Lie 
algebra 02,*. This representation includes the oscillator Hamiltonian. The algebra 
generates a non-compact group, and the corresponding group representation includes 
operators of the form exp(ipr2) and exp(ivp2), and their products (in either order). 
Matrix elements of these operators, for real p and Y, can therefore be written down 

2035 



2036 M J Englefield 

from group-theoretical results obtained by Barut (1967). The formulae thus obtained 
remain valid when ib2 and is2/h2 are substituted for i . ~  and v, giving the required matrix 
elements. 

Barut uses an equivalent representation in the space of monomials of two complex 
variables: the elements of the algebra are represented by differential operators, and the 
elements of the group are represented by linear transformations of type SU(1,l). This 
method is therefore rather similar to the conventional (see, for example, Wigner 1959) 
derivation of the matrix elements of rotations using an equivalent representation on 
polynomials in two complex variables. 

2. Representations of 

The relevant representation of the algebra 02,1 was given by Goshen and Lipkin (1959). 
For the present application this section will describe (with some slight changes in 
notation) results given by Haskell and Wybourne (1972). 

Let 
X=  (p2/4/32h2)-(p2r2/4) 

Y = ( r . p  + p .  r)/4h 

z = (p2/4p2h2) + (p2r2/4). 

XY-YX=-iZ YZ-ZY=iX ZX - XZ = i Y, (4) 

(3) 

Then 

which are the standard commutation relations for a basis of a representation of 02,1. 
This is true for any value of the constant /?, but for the present objective of obtaining 
matrix elements relative to oscillator wavefunctions, /? will be the usual oscillator 
constant: for an oscillator of frequency w and mass M, = Mw/h,  and then 2hwZ is the 
oscillator Hamiltonian. (Tabakin and Davies have M = im, which is the reduced mass 
for the relative motion of nucleons of mass m.) 

Since X, Y and Z are scalars, they operate on angular momentum eigenstates 
without changing the angular momentum quantum numbers 1 and m. For each fixed 
value of ( l ,  m), an irreducible representation of 02,] is obtained with X, Y and Z acting 
in the representation space consisting of the set of wavefunctions having this angular 
momentum. To get the required matrix elements, the oscillator wavefunctions c$,,~,,, are 
used as a basis of this representation space. These functions will be written 
subsequently. 

The energy eigenvalue is (2n + 1 +;)hw, so that 

@,, = (n +il+i)+,,. ( 5 )  
By writing 

1 2 2  3 1 8  X * i Y = Z - $  r fzfy-, 
ar 

using the explicit expression for 4, given by Tabakin and Davies, and using properties 
of the Laguerre polynomials, one obtains 
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Equations (9, (6) and (7) could be deduced from (4) by a completely algebraic 
argument (Goshen and Lipkin 1959). This would be almost the same as deriving from 
angular momentum commutation rules the angular momentum eigenvalues and the 
action of the shift operators. However, in order to get the results of Tabakin and 
Davies, states with the same phase factors must be used, and the only way to ensure this 
is to evaluate (X* i Y)+,, with explicit wavefunctions 4, and the differential operator 
representation of X* i Y. 

The main difference between angular momentum theory and the results given in 
equations (4)-(7) is as follows. In angular momentum theory, for a given value of 1 (i.e. 
eigenvalue of L2),  there are just (21 + 1) eigenvalues m of L, (m = -1,  - 1  + 1,  . . . , +I) 
and the shift operators L, *iLy give zero when m = *l. In the representations, for 
a given 1 the eigenvalues of Z have a lower bound $ I + ; ,  and applying the lowering 
operator X - i  Y to the eigenfunction &, gives zero. This is seen by putting n = 0 in (5) 
and (6). However, the raising operator always gives a new eigenfunction (n = 0, 1, 
2 , .  . .), since the coefficient on the right-hand side of (7) cannot vanish. Thus the 
irreducible representation is infinite dimensional. 

in terms of the classification 
given by Barut (1967). His operator L12 corresponds to Z, so the representation is type 
9+(4) in which L12 has a minimum eigenvalue -4, and the Casimir operator has the 
eigenvalue - c # J ( ~  + 1). Here 4 = -$l - f ,  and the eigenvalue of the Casimir operator 
X2 + Y2 -2’ is -i(12+ I - ? ) .  This may be checked by writing the Casimir operator in 
the form (X-Z) (X+Z)+ iY+ Y2, and substituting (3), and using the equations 

It is now easy to identify these representations of 

r2p2  2 a 2  a L~ 
- - 1 - - 2 1 - + 7 .  

i a  3 
2 ar 4’ A2 ar2 ar A 

iY=-r-+- 

The correspondence between (3) and the fundamental 2 X 2 matrix representation 
of 02,1 is (using the Pauli spin matrices) 

X-$ia,, Y 3 iu,, Z++Tz. (8) 

3. The group representations 

The operators elA, where A are the operators of a Hermitian representation of 02,1, 
give a unitary representation of a corresponding group. The representation space will 
be the same, and the work of Barut (1967) allows one to write down the matrix elements 
(q5,,JeiA (&,) relative to the states +,,. 

From (1) and (2), the matrix elements of V(r, p )  can then be obtained by choosing 
for A 

cp2r2= ~ c ( z - x )  (9) 
or 

qp2/h2 = 2P2q(Z+X)  

(in which c and q are numbers). 
The case 

A = 2 Y l n A  
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is also of interest, because 2i Y = $+ r(a/ar)  = $+ r . V, and exp(2i Y In A )  is the scaling 
operator with the property (Pratt and Jordan 1966) 

exp(2i Y In A ) + ( r )  = ( . / A ) 3 + ( A r ) .  (12) 

(The factor (dA)3 preserves the normalization of 4.) 
The correspondence (8) gives 2i Y In A *-cry In A. Then the matrix exp(-ay In A ) ,  

which can be evaluated using the exponential series, is the matrix corresponding to the 
scaling operator in the fundamental 2 x 2 representation of the group: 

1 A + l / A  iA-i/A] 
2 -iA+i/A A + l / A  * E exp(2i Y In A ) +  exp(-uy In A )  = - 

Similarly, 

c l- ic " 1  exp(icp2r2) + [' + ic 

The matrices corresponding to exp(icp2rZ) exp(iqp2/h2) or exp(iqp2/h2) exp(icp2r2) 
may now be obtained by taking products of the matrices (14) and (15) in the appropriate 
order. 

Taking the exponential function of a matrix belonging to the fundamental represen- 
tation of the algebra (i.e. a real linear combination of the matrices in (8)) always gives a 
matrix of the form 

for some complex numbers 6 and 77, with I WI = 1. The representation used by Barut 
(1967) to evaluate matrix elements consists of the corresponding linear transformations 
of two complex variables z and w, acting on monomial functions znw2"-", i.e. the 
transformations 

Z n  24-n + (62 + j iW)n(77Z + 5;V)2+-n. 

After defining an inner. product by 

IZn'W2+-n'  )=S,,,n!/(-2+)(1-24). . . (n-l-2+),  (17) ( z  n W  2d-n 

matrix elements are obtained by using the binomial expansion. Phase and normaliza- 
tion factors must be chosen so that the representation is isometrically equivalent to the 
one defined on the oscillator wavefunctions, i.e. inner products (matrix elements) are 
preserved. The required correspondence between representation spaces is 

The correspondence between representations of the algebra is given by 

l a i  a a a 
2 az 2 aw'  aw az zw-z---w- X+ i Y-iz-, X - i Y * iw-. 
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The definition (17) ensures that the operators corresponding to X, Y and Z are 
Hermitian, and the phase factor i2’-“ in (18) ensures that the equations 

( i w ~ ) l n ) = J [ n ( n - l - 2 ~ ) ] l n - l )  

12- In) = d[(n + l)(n - 24)Iln + 1) (. a 2  
have exactly the same constant factors as (6) and (7). It is then true that 

(n I W n ’ )  = (4, (eiA I4n’) 
when elA + W. 

transformation defined by the matrix (16) is (Barut 1967): 
Putting in these phase and normalization factors, the matrix element of the 

where 2Fl is the Gauss hypergeometric function 

2F,(-n, -n’; -n 9 2 ‘ -  1-4 ;  &f/q!jj). 

In terms of the normalization factor Nnl used by Tabakin and Davies (1966), this result 
may be written 

4. Potential matrix elements 

To obtain the required matrix elements, it is now only necessary to compare (14) and 
(15) with (16) to get 6 and 7, and then substitute into (19). 

(i) From (14) and (16), the transformation corresponding to exp(icp2r2) has 
6 = 1 +ic, f =  1 -ic, and 77 = f j  = c. With these substitutions, (19) will give 
(4n(exp(icp2r2)(~n,). The matrix elements of Vl exp(-a2r2) may then be obtained by 
putting c = ia2/p2, and multiplying by VI. Evidently the result may be obtained from 
(19) by replacing 6 by 1 -a2 /p2,  $by 1+a2/p2, 77 and f j  by ia2/p2. Thus 

with 

2 ~ l = 2 ~ 1 ( - n ,  -n’; -n -n‘ - I - -1*  2 ,  1-p4/a4). 

(ii) Multiplying the matrices in (14) and (15) shows that the transformation corre- 
sponding to exp(iqp2/tt2) exp(icp2r2) has 6 = 1 +ic +ip2q -2cp2q and 7 = 
c -p2q +2icp2q. The matrix elements of exp(-s2p2/h2) exp(-b2r2) are therefore 
obtained from (19) by the following replacements: 

5 by 1 - ( b 2 / p 2 ) - p 2 8 2 + 2 b 2 s 2 = ( 2 - t ) ( 1 +  U -  v) 
f by 1+(b2/p2)+p2s2+2b2s2=tV 
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77 by 

ii by 

where t =  1+2s2p2, U=(1/2t)+1/2(2-t) and V=$+(1/2t)+(b/p)2 are quantities 
used by Tabakin and Davies (1966) in their formulae for the matrix elements. The 
argument ((f/qij) of the hypergeometric function in (19) becomes 

ib2/pz - is2p2 - 2ib2s2 = i(2 - t)( V- U) 

ib2/p2 - is2p2 + 2ib2s2 = if( V- 1) 

x = (V- U- l)V/( v- U)( v- 1). 

The result is 

( 4 n  I e ~ ~ ( - s ~ ~ ~ / h ~ )  exp(-b2r2)14nf> 
NnI&lr(n + d + i + ; )  

Interchanging n and n' gives (4,,lexp(-b2r2) exp(-s2p2/h2))qb,,). 
(iii) The matrix elements (nlp21n") are well known (or may be deduced from the 

correspondence (8)). They are non-zero only for n"= n, n f 1, allowing the matrix 
elements of C(p) exp(-b2r2) to be written as a sum of three terms using (21): 

n(n  + I +$)tvr(n + i +$) ,F,(-n + 1, -n'; -n - n ' -  1 +.I. ) - - 
27 (2 - t ) (  v- U) 

+ (2n + 1 +;)r(n +n'+ I + 3 2 ~ 1 ( - n ,  -n';  -n - n'- I -- ;; x )  

Again interchanging n and n '  gives (4, lexp(-b2r2)C(p)14,,). 
(iv) Putting 

into (20), with U = 1 +;, immediately gives part of the formula of Tabakin and Davies 
(1966). The rest of their result may be obtained from (22) after some algebra which 
commences as follows: use (23) in the first term with U = I ++ and U as the summation 
variable, t aken+l+i ins ide  thesummationandwriteit as (n+n '+ l+$-v) - (n ' -u) ,  
thus obtaining two terms; use (23) in the third term with U = 1 +; a n d j  as the summation 
variable, take n + 1 (from (n + l)!) inside the summation and write it as (n + 1 - j ) + j  to 
obtain two terms. 

Some of this algebra is equivalent to using the relations between contiguous 
hypergeometric functions. The formulae (21) and (22) may be put in alternative forms 
using transformation formulae to convert to hypergeometric functions of l /x  or (1 - x ) .  
A different form may be advantageous for numerical calculations. 

The equivalence of (20) and (22) to the results of Tabakin and Davies shows that the 
replacements of c by ia2/Pz and 4 by is2 are valid, although it is clear that this can only 
be done after using the group-theoretical result (19). 
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5. The scaling operator 

The Tabakin and Davies formula for C(p)+, is equivalent to 

exp(-s2p2/h2)4, = (tJU)-2n-’-t exp( s2p4~r2 )  exp(2i Y InJU)4, (24) 

in which exp(2i Y InJU) is a scaling operator as in (12). To establish (24) it is sufficient 
to show that the operators 

(25) ( ~ J u )  2n+1+3 2 exp(-s’p4~r2) exp(-s’p’/V) 

and exp(2i Y InJU) have the same matrix dements. 

( = i ( U + l ) / d U a n d  7 =&U-l ) /dU, i .e .  
From (13), the matrix elements of the scaling operator are given by (19) with 

in which the argument of the hypergeometric function is (U+ 1)’/( U - 1)’. 
The matrix elements of (25) may be obtained from (21) by interchanging n and n’, 

replacing b’ by s2p4U, and multiplying by (tJU)*”+’+*. The result is just (26), because 
with this choice of b’, Vis  replaced by $+;U. 

The matrix element (26) is the same as the overlap integral between oscillator 
wavefunctions with different spring constants p and PJU. Using the hypergeometric 
transformation formula (n 2 n’)  

2F1(-n, -n’; -n -n’ -1- -  ;; x )  

- - r ( n  + E + $)(I - x)“’n 2F1(-n’, -n‘ - l -T;  1 n - n ’ +  1; l / ( l -x)) ,  
T ( n + n ’ + I + t ) ( n - n ’ ) !  

and putting J U  = a so that x = (1 +a2)’/(1 -a’)’, gives a formula previously derived 
by Talman (1970). 

6. Condusion 

The matrix elements between harmonic oscillator eigenfunctions of the operators 
exp(-b2r2) and exp(-s2p2/A2) may be evaluated by considering isometric group 
representations. Since the representation includes the scaling operator, one can also 
obtain matrix elements between eigenfunctions having different spring constants. 
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